Technische Daten

Anwendungen und Grundfunktion

Anwendung in Nutzfahrzeugen zum kontrollierten und überwachten Ein- u. Ausschalten des Bordnetzes.
Basis ist ein Bistabiles Relais mit 2 Spulen und dauermagnetischer Haltung. Die Relaisansteuerung und Hauptkontakt-überwachung sowie weitere Kontrollfunktionen werden von einer Elektronik übernommen.

Signal- u. Steuereingänge/Elektronik

Plus Dauerplus, Ruhestrom 2mA

Minus Masse

INIT Steuereingang,schaltet Relais EIN über ein Dauersignal vom Zündschloss, Klemme 15.
Signalwechsel LOW-HIGH ist EIN-Schaltsignal.
Signalwechsel HIGH-LOW ist AUS-Schaltsignal.
ECE36 Detektierung ECE36 (NOT-AUS=LOWPEGEL)
für Kabelbruch-Erkennung.

Zeitverzögerung zwischen INIT u. Hauptkontakt Stromaufnahme der Steuereingänge 3mA@12V Signalschwellen: LOW <0,5V/ HIGH >5V. Kurzschlussfest. Integrierter Verpolschutz. Ausblendzeit der Ansteuerung 100msec gegen Spikes und Preller. Platine mit Überzugslack geschützt. Signal- u. Steuereingänge über Kabel u. Deutsch-Stecker.

Abschaltvarianten

PIN 5 Zündung: KI 15 vom Zündschloss (Zündung

EIN-Information)

PIN 2 ECE36: absoluter Notaus sofortige Abschaltung
PIN 1 INIT: normale Batterie Zu-/ Abschaltung

Abschaltvarianten:

1.PIN 2 = High:

Wenn PIN 5 Highsignal (High, Plus) hat, öffnet das Relais nur, wenn über PIN 2 = High Notaus = Lowpegel ausgelöst wird. Das Relais öffnet sofort

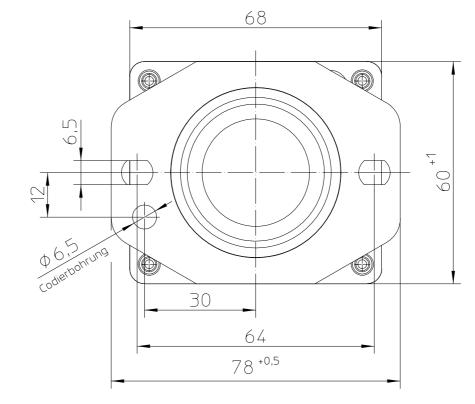
2.PIN 1 = High:

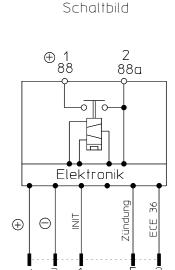
Wenn PIN 1 High hat, so schaltet das Relais nach 120h automatisch ab. Aber nur, wenn an PIN 5 Lowsignal (Zündung ist AUS) anliegt. Jeder neue Highpegel am PIN 5 (Einschalten der Zündung) startet die bereits abgelaufene Zeit der 120h neu.

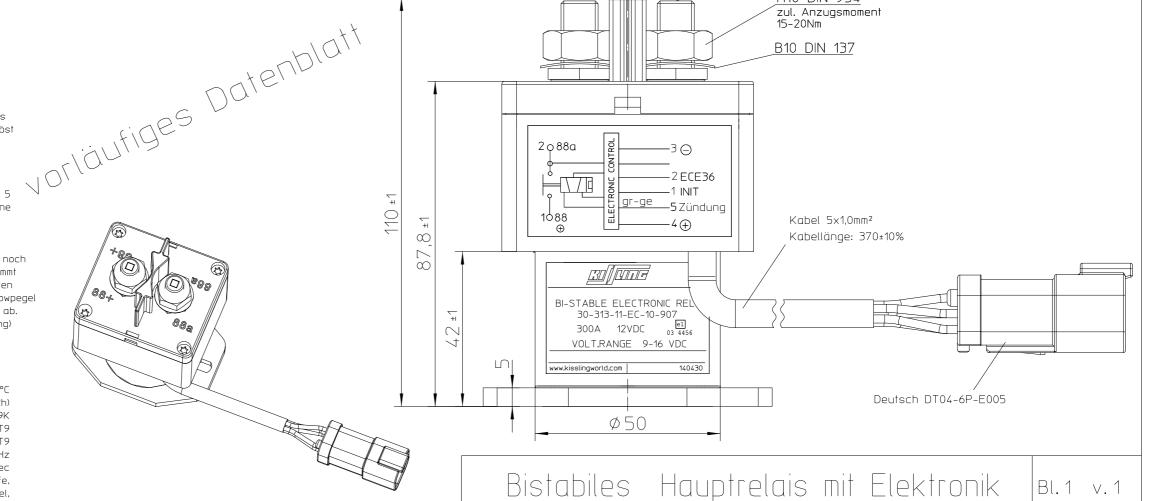
3.PIN 1 = Lo

Wenn das Relais eingeschaltet ist (Hauptkontakt geschlossen), PIN 1 auf Lowpegel ist und die 6 Minuten noch nicht abgelaufen sind und PIN 5 wieder Highsignal bekommt (Zündung EIN), so wird der abgelaufene Teil der 6 Minuten wieder auf 0 zurückgesetzt. Wenn dann PIN 5 wieder Lowpegel erreicht (Zündung AUS), so laufen die 6 Minuten erneut ab. Jeder neue Highpegel am PIN 5 (Einschalten der Zündung) startet die bereits abgelaufene Zeit der 6 Minuten neu.

Allaemeine Daten


Migemente Bareri
Betriebstemperatur40°C bis +80°C
Lagerungstemperatur46°C bis +95°C (95°C für 2h)
Schutzart Innenraum
IEC529 u. DIN 40 050 T9
Schutzart Anschlüsse IP00/ IEC529 DIN 40 050 T9
Vibration
Schock6g/ 12msec
Beständigkeit gegen gebräuchliche Öle,Kraftstoffe,
Hydraulikflüssigkeiten, Alkohol, Feuerlöschmittel,
Batteriesäure,Salznebel,Reinigungsmittel,
Feuchte Wärme, Temperaturwechsel, Schadgase
Einbaulage beliebig
Gewicht


Elektrische Daten


Nennspannung
Betriebsspannung9-16 VDC
Min. Betriebsspannung
Unterspannung.nach Einschalten5,5 VDC für ca. 250msec
Min. Isolationswiderstand
Isolationswiderstand nach Belastung 50 MOhm
Hochspannungsfestigkeit
EMV-Festigkeit Richtlinie 94/54EG
e1*72/245*2004/104*4456*00

Relais Daten

Dauerstrom (Nennlast) bei 9	95mm²	300 A
bei 7	70mm²	250 A
bei 5	50mm²	200 A
Überlast (70u.90mm²)350	0A-1sec,1000A-25sec,700	A-52sec
	7x450A,30sec EIN,120	sec AUS
Überlast (50mm²) 23(00A-1sec,700A-25sec,500	A-52sec
Kontaktspannungsabfall (be	ei Nennlast 300A)	. 150 mV
Kontaktspannungsabfall na	ch Lebensdauer	175 mV
Kontaktlebensdauer, ohmsc	he Nennlast 50 00	0 Zyklen
Kontaktlebensdauer, mecha	nisch 100 00	0 Zyklen
Anzugsspulenstrom-Impuls(2	2,1 Ohm) ca.5,7A für	100msec
Abwurfspulenstrom-Impuls(2	,6 Ohm) ca.4,6A für	100msec
Kontaktanzugszeit	max.	15 msec
Kontaktprellzeit	max	.5 msec
Kontaktabwurfzeit	max.	10 msec

Name Allgemeintoleranz Maßstab

Datum

20.03.2019 | Hamar

Freig. | 20.03.2019 | Kaise | Bl. 1 v. 1

Erstel. 30.04.2014 | Kaise

M10

M10 DIN 934

Zeichnungsnummer

Kunden-Znr.:

30-313-11-EC-10-907