

PRODUCT SPECIFICATION

TE Connectivity Description:

DP11SMD3015NB9.5K - 11MM SMD ROTARY ENCODER - 2176159-1

Approved on behalf of customer		
	Date	

Parts corresponding to RoHS Compliant: 2005-Apr.-1

Approved	Checked	Prepared
Tony Northcott	Jonathan Catchpole	Raghavendra K

Issued Date: 2010/09/28 - Version 1

General

1-1 Application

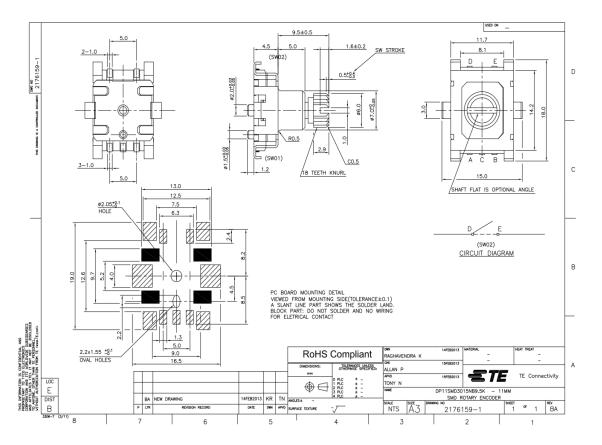
This specification applies to the 11mm size rotary encoder (incremental) for microscopic current circuit

used in electronic equipment.

1-2 Standard atmospheric conditions

Unless otherwise specified the standard range of atmospheric conditions for making measurements and tests is as follows.

Ambient temperature: 15°C to 35°C Relative humidity: 25% to 85% Air pressure: 86kpa to 106kpa


If there is any doubt the results. measurement shall be made within the follow limits

Ambient temperature: 20°C±2°C Relative humidity:60% to 70% Air pressure: 86kpa to 106kpa

1-3 Operating temperature range : -40°C to +85°C

1-4 Storage temperature range :-40°C to +85°C

1-5 Construction and dimensions Refer to attached drawing

NO.	item	condit	ions	specifications
				2. Phase-different signals
				(Signal A. & signal B)
				Details shown in < fig.1 >
				(The broken line shows detent
				position of with - detent type.)
		Shaft rotational direction	Signal	Output constant speed : 360°
2–1	output signal format	a w	A (Terminal A-C)	OFF ON
		C. W.	B (Terminal B-C)	OFF ON
			A (Terminal A-C)	OFF ON
		C. C. W.	B (Terminal B-C)	OFF ON
2–2	Resolution	Number of pulses in 360° rotation.		15 pulses / 360° for each phase (2click 1 pulse)
2–3	Switching characteristics	Measurement shall be made under the condition as follows. (1). Shaft rotational speed: 360°/S (2). Test circuit: < fig. 2 >. DC5Y SKΩ Terminal A Terminal B ENCODER Terminal C		
2–4	Sliding noise	Details shown in <fig.3> Specified by the signal's passage time from 3.5V to 1.5V or from 1.5V to 3.5V of each switching position (code OFF→ON or ON→OFF) Note: To avoid chattering(t1, t3), please masking time and adding C/R filters on you circuit for pulse count design, as show in the signal of the signal of</fig.3>	se consider our	t1,t3 ≤2ms

2) Bounce Details shown in Egg. 3">Egecified by the time of voltage change exceed 1.5V in code - ON aren.">Voltage change exceed 1.5V in code - ON aren. When the bounce has code - ON time less than Ims between chatterings (1 1 or 13), the voltage change shall be regarded as a part of chattering. When the code - ON time between 2 bounces is less than Ims, they are regarded as 1 linked bounce. (3) Sliding noise The voltage change in code-OFF area 3.5V MIN. (fig. 4) Terminal A Terminal B DCGV JOKA TERMINAL TOTAL B TOTAL B DCGV JOKA ON JUNE Code - OFF area: The area which the voltage is 3.5V or more. Code - ON area: The area which the voltage is 1.5 V or less. Measurement shall be made under the condition which the shaft is rotated in 360° / S(constant speed).	NO.	item	conditions	specifications
The voltage change in code-OFF area Signal B Sign			Details shown in <fig.3>.Specified by the time of voltage change exceed 1.5V in code - ON area. When the bounce has code - ON time less than Ims between chatterings (t 1 or t 3), the voltage change shall be regarded as a part of chattering. When the code - ON time between 2 bounces is</fig.3>	t2 ≤2ms
OFF Signal A Signal B OFF				3.5V MIN.
which the shaft is rotated in 360° / S(constant speed).			OFF $\frac{5V}{3.5V}$ $\frac{10K\Omega}{10K\Omega}$ $\frac{10K\Omega}{10$	10ΚΩ 10ΚΩ 10ΚΩ 0.01μF
Rotational direction	!5		which the shaft is rotated in 360° / S(constant speed). Signal A Signal B T1 T3 OFF ON OFF ON OFF	△ T≥4 msec

NO.	item	conditions	specifications
2-6	Insulation resistance	Measurement shall be made under the condition which a voltage of 250VD.C is applied between individual terminals and bushing.	Between individual terminals and bushing . $100 \mathrm{M}\Omega$ MIN.
2–7	Dielectric strength	A voltage of 300V A.C. shall be applied for 1 min or a voltage of 360V A.C. shall be applied for 2 sec between individual terminals and bushing (Leak current: 1mA)	Without damage to parts arcing or breakdown.
2-8	Rating		D.C. 5V 10 mA

Mechanical characteristics

Mechanica	ii Characteristics		
3–1	Total rotational angle		360° (Endless)
3–2	Detent torque		100±70gf.cm
3–3	Number and position		(30 detents) (step angle:12° ±3°)
3–4	Push - pull strength of shaft	Push and pull static load of 10Kgf shall be applied to the shaft in the axial direction for 10sec.(After installing)	Without damage or excessive play in shaft. No excessive abnormality in rotational feeling.
3–5	Shaft wobble	A momentary load of 500gf.cm shall be applied at the point 5mm from the tip of the shaft in a direction perpendicular to the axis of shaft.	Bushing wobble length (mm) (mmp-p less) 3.5 1.4xL/30mm 5 1.1xL/30mm 7 0.7xL/30mm
3-6	Rotation play at the click position	Mesurement with jig for rotational angle.	5° MAX.
3-7	Notice for mounting	Hold the bushing use front panel or light pipe. Because this switch not has thread, If don't hold the bushing, the switch maybe become intermittent or rough mounting after soldering by knob stopper force.	P.C.B SWITCH

Endurance characteristics

NO.	item	conditions	specifications
4-1	Rotational life	The shaft of encoder shall be rotated to 15,000 cycles at a speed of 500 cycles per hour without electrical load, after which measurement shall be mad (1 cycle: rotate 360°C.C.W. rotate 360° C.W.)	Detent torque: Relative to the previously Specified +10 value. % -30 Sliding noise: t1,t2,t3 ≤ 3ms Except above items, specicfications in clause 2.1~8 and 3.1~6 shall be satisfied.

Soldering condition

NO.	item	conditions	specifications
		Precaution in use: 1.1 Load on terminals during soldering: Note that if the load is applied to soldering they might suffer deformation and defects in electrical performance. 1.2 Use of water-soluble soldering flux shall be avoided because it may cannot also the soldering shall be confirmed with actual production. 1.4 Example of re-flow soldering condition (reference) a-1. Heating method: re-flow soldering with infrared heater. (only oncome a-2. Temperature measurement: Thermocouple Φ0.1~0.2 CA(K) or Cannot a-3. Temperature profile:	mance. huse erosion of the part. on conditions.
		Temperature(°C)	
		300 -	960°C mar
			260°C max, (5s max,)
		200	150.500
		100-	√150±5°C
5–1	Re-flow soldering	60~120s	Time 60s max.
		b-1. Heating method: re-flow soldering with hot air.(only once) b-2. Termperature measurement: Thermocouple Φ0.1~0.2 CA(K) or Co soldering portion. b-3. Temperature profile: b-3. Temperature profile:	C(T) at
		200 (38	o°C max, s max,) o±5°C
		80~100s 60s max	me

PUSH MOMENTARY SWITCH SPECIFICATION

NO.	item	conditions	specifications
6–1	Contact resistance	Measured by the Electric Current DC voltage drop method	100 mΩ MAX.
6–2	Chattering	Switch is operated at the rate of 1 cycle 1 sec. The 1 cycle shall be OFF - ON - OFF.	Less than 10 msec.
6–3	Insulation resistance	Measurement shall be made under the condition which a voltage of 250V D.C.is applied between individual terminals and bushing.	Between individual terminals and bushing $100 M\Omega\ MIN$.
6–4	Dielectric strength	A voltage of 300V A.C. shall be applied for 1 min or a voltage of 360V A.C. shall be applied for 2 sec between individual terminals and bushing. (Leak current : 1mA)	Without damage to parts arcing or breakdown.
6–5	Switch rating (Resistor load)		D.C.5V 10mA

(Switch mechanical characteristicals)

7–1	Contact arrangement	S.P.S.T (PUSH ON)
7–2	Switching stroke	+0.4 0.5 mm -0.3
7–3	Switch strength	350±100gf.

(Switch mechanical characteristicals)

NO.	item	conditions	specifications
8–1	Operating life	The shaft of switch shall be 20,000 times without electronical load, after which measurements shall be made	Switch contact resistance : $200m\Omega \ MAX \ .$ Switch strength : Relative to the $+10$ previously specified value % -30 Except above items specifications in clause $6.1{\sim}4 \ and 7.1{\sim}3 \ shall \ be \ satisfied.$

ROHS COMPLIANCE