Product Specification # High Speed Data, Pin Headers 90° / 180° , die-casting | 1. CONTENT | 2 | |---|--------------| | 1.1 Product Table | 2 | | 1.2 Qualification | 2 | | 2. APPLICABLE DOCUMENTS | 2 | | 2.1 TE Documents | 2 | | 2.2 Other Documents | 2 | | 3. REQUIREMENTS | 3 | | 3.1 Design and Construction | 3 | | 3.2 Materials | 3 | | 3.3 Performance and Test Description | 3 | | 3.4 Test Requirements and Procedures Summary | 3 | | ●acc. TE HSD-Test-Specification 109-18261 ●acc. IDB 1394 ●acc. TE (internal Test) | 3
5
10 | | 3.5 Qualification and Requalification Test Sequence | 11 | | ●acc. TE HSD-Test-Specification 109-18261
●acc. IDB 1394 | 11
13 | | Cable Plug to Board Socket Header Configurations | 13 | | 4. QUALITY ASSURANCE PROVISIONS | 14 | | 4.1 Qualification Testing | 14 | | 4.2 Requalification Testing | 14 | | 4.3 Acceptance | 14 | | 4.4 Conformance Inspection | 14 | ### 1. CONTENT This specification covers the performance, tests and quality requirements for the High Speed Data pin headers 90° and 180° pos., die-casting, shielded. These products are only permissible for car interior. They are used for soldering on PC-boards or other applications. # 1.1 Product Table Different versions are available. Order No. See drawing ### 1.2 Qualification When tests are performed the following specified specifications and standards shall be used. All inspections shall be performed using the applicable inspection plan and product drawing. # 2. APPLICABLE DOCUMENTS The following documents form a part of this specification to the extent specified herein. In the events of conflict between the requirements of this specification and the product drawing or of conflict between the requirements of this specification and the referenced documents, this specification shall take precedence. # 2.1 TE Documents | Α | 109-1 | General Requirements for Test Specifications | |---|--------------|--| | В | Customer Dra | awings and Name | | 2291362 | HSD header 90degree | |---------|-----------------------------| | 2291364 | HSD header 180degree | | 2304935 | HSD header 180degree w/ cap | | 2315239 | HSD header 180degree + 2MQS | | 2315834 | HSD header 90degree + 2MQS | **C** Product Specifications 108-94106 Product specification for the HSD Connector System D HSD-Test-Specification 109-18261 Test-Specification for the HSD Connector System **E** Application Specification 114-32195 Application specification for the HSD, Pin Headers 90°/180° die-casting ### 2.2 Other Documents | Α | DIN IEC 512 | Electromechanical components for electronic equipment, basic testing | |---|-------------|--| | | | procedures and measuring methods, Edition May 1994 | B DIN IEC 68 Electrical engineering, basic environmental testing procedures, Edition August 1991 C IDB 1394 1394 Copper Automotive Standard (Supplement to IDB 1394) Document number TS 2008001, Edition June 2008 Rev A 2 of 14 # 3. REQUIREMENTS # 3.1 Design and Construction Product shall be of the design, construction and physical dimensions specified on the applicable production drawing. # 3.2 Materials Descriptions for material see in production drawing. # 3.3 Performance and Test Description The product is designed to meet the electrical, mechanical and environmental performance requirements specified in paragraph 3.4. All tests are performed at ambient environmental conditions per IEC 512 unless otherwise specified. # 3.4 Test Requirements and Procedures Summary # • acc. TE HSD-Test-Specification 109-18261 | | Acceptance Criteria | Characteristic | | | |------------|---------------------|------------------------------------|--|--| | | min 25 | Mating cycles | | | | m. | max. 30N | Mating Force Connector Pair | | | | l Data | max. 60N | Mating Force with MQS module | | | | nical | min. 5N | Unmating Force Connector Pair | | | | Mechanical | min. 110N | Retention Force Connector Lock | | | | 2 | min. 3N
max. 15N | Connector Lock Manipulation Force | | | | | min. 80N | Polarization Feature Effectiveness | | | | | max. 7.5 mOhm
max. 10 mOhm
max. 15 mOhm | Contact Resistance before exposure: Outer Contact Signal Contact straight Signal Contact angled | |------------|---|---| | Data | max. 40 mOhm
max. 40 mOhm
max. 40 mOhm | Contact Resistance after exposure: Outer Contact Signal Contact straight Signal Contact angled | | rical | min. 1,000 MOhm | Isolation Resistance | | Electrical | max. 2.5 A | Current Capability at 80°C | | _ | max. 5.0 A at MQS pins | Dependent on mating connector and cable | | | 100 Vrms | Operating Voltage | | | 500 Vrms | Test Voltage | Rev A 3 of 14 | | 100 +/- 15 Ohm | Impedance Pin Header only | | |-------------------------|--|---|--| | | max.50 ps
max.125 ps | Propagation Delay
Header straight
Header angled | | | | max. 5 ps
max. 25 ps | Propagation Delay Skew in a wire pair
Pin Header straight
Pin Header angled | | | Signal Propagation Data | max. 5 ps
max. 5 ps | Propagation Delay Skew between Wire pairs
Pin Header straight
Pin Header angled | | | ropage | max. 0.2 dB @ 1GHz
max. 0.1 dB @ 1GHz | Insertion Loss mated with Connector
Insertion Loss for header Connector | | | ignal Pr | max20 dB
max17 dB | Return Loss Mated with Connector
0 - 1 GHz
0 - 2 GHz | | | 0, | max. 5% / < -30 dB to 1 GHz | Cross Talk | | | | min. 75dB
min. 65dB | Shielding Effectiveness
0 - 1 GHz
0 - 2 GHz | | | | min. 65dB
min. 60dB | Bulkhead Feedthrough
0 - 1 GHz
0 - 2 GHz | | | | DIN IEC 60068-2-27 | Mechanical Shock | | | Ita | DIN IEC 60068-2-64 (Class 2 | 2) Vibration | | | al Da | 1m | Drop from hight | | | Environmental Data | DIN IEC 60068-2-14
-40°C - +105°C | Thermal Shock | | | Enviro | USCar 2.6 -5.6.2.
Test Temperature +105°C | Temperature Humidity Cycling | | | | DIN IEC 60068 2-2
Temperature +105°C | Dry Heat | | | | CuZn, CuSn | Outer Contacts | | | ials | CuSn | Inner Contacts | | | Materials | PA | Dielectric | | | | PA | Housings | | | | | | | | | Ni or Sn | Outer Contacts Contact Area | | | Platings | Au | Signal Contacts Contact Area | | | Plat | Sn | Outer Contacts Soldering Area | | | | See Drawing | Signal Contacts Soldering Area | | This table is part of the TE HSD-Test-Specification, all values apply to the test conditions specified there. Rev A 4 of 14 # • acc. IDB 1394 Performance Group A: Basic Construction, workmanship, dimensions, and plating thickness | Phase | | | e performed | Measurements to be performed | | Requirements | | |--------|----------------------------------|--|-------------|--------------------------------------|------------------------------|---|--| | Filase | Title No. Severity or conditions | | | Title | ID No. | Performance Level | | | A.1 | | | | Visual
Inspection | USCAR-2,
Rev. 6,
5.1.8 | With aid of 10X magnification; No evidence of deterioration, cracks, deformities, etc., that could affect their functionality or distort their appearance. No deviation from dimensional tolerances of critical dimensions. | | | A.2 | | | | Plating
Thickness
Measurements | | No deviation from plating materials and thickness specifications. | | # Performance Group B: Copper Socket DC Electrical Functionality when subjected to Mechanical Shock and Vibration | and Vibi | 411311 | | | | | | |----------|--|--------|---|--|------------------------------|--| | Phase | Test to be performed | | | Measureme
perfor | | Requirements | | riiase | Title | ID No. | Severity or conditions | Title | ID No. | Performance Level | | B.1 | None | | Mount socket rigidly. Insert plug by hand. | Dry Circuit
Resistance | USCAR-2,
Rev. 6,
5.3.1 | 50 milliohms maximum initial per mated contact | | B.2 | Connector Cycling USCAR-2, Rev. 6 , 5.1.7 Cycle connector 25x. | | Cycle connector 25x. | Dry Circuit
Resistance | USCAR-2,
Rev. 6,
5.3.1 | 30 milliohms maximum change from initial per mated contact | | B.3 | Vibration USCAR-2, Figure 5.4.6.5 For compone | | | Circuit Continuity Monitoring 7 ohms greater than 1micro- second | USCAR-2,
Rev. 6,
5.1.9 | No resistance change exceeding FFS ohms for more than 1 microsecond. (Each contact) | | B.4 | Mechanical Shock (Specifie d Pulse) Mechanical Shock (Specifie d Pulse) USCAR-2, Rev. 6, 5.4.6 10 half-sine wave impulses (10 milliseconds duration at 35 Gs force) | | wave impulses
(10 milliseconds
duration at 35 | Circuit Continuity Monitoring 7 ohms greater than 1micro- second | USCAR-2,
Rev. 6,
5.1.9 | No resistance change exceeding FFS ohms for more than 1 microsecond. (Each contact) | | B.5 | None | | | Dry Circuit
Resistance | USCAR-2,
Rev. 6,
5.3.1 | 30 milliohms maximum change from initial per mated contact | | | | | | Visual
Inspection | USCAR-2,
Rev. 6,
5.1.8 | With aid of 10X magnification; No evidence of deterioration, cracks, deformities, etc., that could affect their functionality or distort their appearance. | Rev A 5 of 14 Performance Group C.1: Copper Socket DC Electrical Functionality when subjected to Humidity Stress | Phas | Test to be performed | | | Measurem
perfo | ents to be | Requirements | |-------|-------------------------------------|------------------------------|--|---------------------------|------------------------------|--| | е | Title | ID No. | Severity or conditions | Title | ID No. | Performance Level | | C.1.1 | None | | Mount
socket
rigidly. Insert
plug by
hand. | Dry Circuit
Resistance | USCAR-2,
Rev. 6,
5.3.1 | 50 milliohms
maximum initial per
mated contact | | C.1.2 | Connector Cycling | USCAR-2,
Rev. 6,
5.1.7 | Cycle
connector
25x. | Dry Circuit
Resistance | USCAR-2,
Rev. 6,
5.3.1 | 30 milliohms
maximum change
from initial per mated
contact | | | | LICCAR | -40 to 100C
per class 2
environment.
Maximum | Dry Circuit
Resistance | USCAR-2,
Rev. 6,
5.3.1 | 30 milliohms
maximum change
from initial per mated
contact | | C.1.3 | Temperature/
Humidity
Cycling | USCAR-2,
Rev. 6,
5.6.2 | humidity per
Figure
5.6.2.3.
Total
duration 320
hours (40
cycles). | Visual
Inspection | USCAR-2,
Rev. 6,
5.1.8 | With aid of 10X magnification; No evidence of deterioration, cracks, deformities, etc., that could affect their functionality or distort their appearance. | # Performance Group C.2: Copper Socket Isolation Resistance Functionality when subjected to Humidity Stress | Phas | Test to be performed | | | | nents to be
ormed | Requirements | |-------|-------------------------------------|-------------------------------|--|-----------------------------|--------------------------------|--| | е | Title | ID No. | Severity or conditions | Title | ID No. | Performance Level | | C.2.1 | Connector Cycling | USCAR-2,
Rev. 6 ,
5.1.7 | Cycle
connector
25x. | Isolation
Resistanc
e | USCAR-2,
Rev. 6,
5.5.1.4 | Resistance between adjacent terminals must exceed 20 megohm at 500 VDC. | | C.2.2 | Temperature/
Humidity
Cycling | USCAR-2,
Rev. 6,
5.6.2 | -40 to 100C
per class 2
environment.
Maximum
humidity per
Figure
5.6.2.3. Total
duration 320
hours (40
cycles). | Isolation
Resistanc
e | USCAR-2,
Rev. 6,
5.5.1.4 | Resistance between
adjacent terminals
must exceed 20 meg-
ohm at 500 VDC. | Rev A 6 of 14 | Performance Group C.3: Copper Socket Signal Integrity Functionality when subjected to Humidity Stress | | | | | | | | |---|--|--------------------------------|--|---|-------------------------------------|--|--| | Phase | Test to be performed | | | | nents to be
rmed | Requirements | | | Filase | Title | ID No. | Severity or conditions | Title | ID No. | Performance Level | | | C.3.1 | Mated
Connector and
Termination
Impedance | | 160 ps rise
time at 50
ps, 100ps,
and 150 ps
beyond the
connector
launch
plane | Impedance -Differential Mode (Connector Only) | IEEE Std
1394-2000
Annex K.3 | System Impedance (ZTP) = 100Ω : ZPTAConn = $100\Omega + /-15\Omega$
System Impedance (ZTP) = 110 Ohms : ZPTAConn = $110\Omega + /-15\Omega$ | | | C.3.3 | Propagation
Delay | | | Propagation
Delay | | ≤ 125 ps for Pin Header 90°
≤ 50 ps for Pin Header 180° | | | C.3.4 | Propagation
Delay | | | Propagation
Skew –
Differential
Mode | IEEE Std
1394- 2000
Annex K.6 | ≤ 25 ps for Pin Header 90°
≤ 5 ps for Pin Header 180° | | | C.3.7 | Insertion Loss
(Mated
Connector
Pair) | | | Attenuation | IEEE Std
1394-2000
Annex K.4 | max. 0,2 dB (0 – 1 GHz) | | | C.3.8 | Return Loss
(Mated
Connector
Pair) | | | Return Loss | ANSI/EI
364-108 | max20 dB (0 – 1 GHz) | | | C.3.9 | Cross Talk
(Mated
Connector
Pair) | | | Cross Talk | IEEE Std
1394-2000
Annex K.8 | max. 5 % (differential TDT at 160 ps, 10-90% rise time) max30 dB (0 – 1 GHz) | | | C.3.11 | Connector
Cycling | USCAR-
2, Rev. 6,
5.1.7. | Cycle
connector
25x | | | | | | C.3.12 | Temperature/
Humidity
Cycling | USCAR-
2, Rev. 6,
5.6.2 | -40 to 100C
per class 2
environment.
Maximum
humidity per
Figure
5.6.2.3. Total
duration
320h (40
cycles) | | | | | | C.3.13
-
C.3.22 | Repeat C.3.1
through C.3.10 | | | | | | | NOTE – Phase C.1, C.2 and/or C.3 can be combined if the sample configuration is suitable for the laboratory. Rev A **7** of **14** Performance Group D: Copper Socket DC Electrical Functionality when subjected to Thermal Shock | Phase | Test | to be perfo | rmed | Measurem perfo | | Requirements | |--------|----------------------|---|--|------------------------------|--|---| | - Huse | Title | ID No. | Severity or conditions | Title | ID No. | Performance Level | | D.1 | None | | Mount socket rigidly. Insert plug by hand. | Dry Circuit
Resistance | USCAR-2,
Rev. 6,
5.3.1 | 50 milliohm maximum initial per mated contact | | D.2 | Connector
Cycling | USCAR-2,
Rev. 6,
5.1.7 | Cycle connector 25x. | Dry Circuit
Resistance | USCAR-2,
Rev. 6,
5.3.1 | 30 milliohm maximum change from initial per mated contact | | | | | -40 to 100C | Dry Circuit
Resistance | USCAR-2,
Rev. 6,
5.3.1 | 30 milliohm maximum change from initial per mated contact | | D.3 | Thermal Shock | Thermal Shock USCAR-2, Rev. 6, 5.6.1 per class 2 environment. Total duration 100 cycles, 30 minute dwell. | Visual
Inspection | USCAR-2,
Rev. 6,
5.1.8 | With aid of 10X magnification; No evidence of deterioration, cracks, deformities, etc., that could affect their functionality or distort their appearance. | | Performance Group E: Copper Socket Mechanical Functionality when subjected to Temperature Life Stress | Phase | Test to be performed | | | Measuremer
perform | | Requirements | |--------|---------------------------------|------------------------------|---|---|----------------------------------|---| | - Huse | Title | ID No. | Severity or conditions | Title | ID No. | Performance Level | | E.1 | None | | Mate Force
Only | Connector-
Connector
Mating/Un-
mating Force | USCAR-
2,
Rev. 6,
5.4.2 | 55N Max Mate Force | | E.2 | Connector
Cycling | USCAR-2,
Rev. 6,
5.1.7 | Cycle connector 25x. | | | | | E.3 | High
temperature
exposure | USCAR-2,
Rev. 6,
5.6.3 | 100 C for
1008 hours
mated | | | | | E.4 | None | | Un-mate
Force w/ &
w/o Lock &
Lock
Actuation
Force | Connector-
Connector
Unmating
Force Only | USCAR-
2,
Rev. 6,
5.4.2 | Connectors with locks: Un-mating force w/ Locke engaged; 100N min, Connector Lock Manipulation Force; 3N min to 60N max Connectors without locks: Un-mating force w/o Lock; 5N min | Note: Phase E.1 and E.2 can be combined if the sample configuration is suitable for the laboratory. Rev A 8 of 14 | Performance Group F: General Tests | | | | | | | | | | | | | |------------------------------------|--|------------------------------|--|---|------------------------------|--|--|--|--|--|--|--| | Phase | Tes | st to be perf | ormed | | nents to be
ormed | Requirements | | | | | | | | riiasc | Title | ID No. | Severity or conditions | Title | ID No. | Performance Level | | | | | | | | | Connector/
Cable Axial
Pull test (5
cable | | Fix connector housing and | Continuity | ANSI/EIA
364-46B | No discontinuity 1 microsecond or longer. (Each contact). | | | | | | | | F.1 | assemblies
with
connector at
one end 1m
long, 5
mating
connectors.) | | apply a 100N load to the cable for one minute on cable axis. | Visual Inspection USCAR-2 Rev. 6, 5.1.8 | | No jacket tears or visual exposure of shield. No jacket movement greater than 1.5 mm at point of exit from the connector or over mold. | | | | | | | | F.3 | Audible Click (8 mating connector pairs w/o humidity aging, 8 mating connector pairs w/ humidity aging.) | USCAR-2,
Rev. 6,
5.4.7 | 95% - 98% RH
@ 40C, 6 hours
Minimum | Audible
Click | USCAR-2,
Rev. 6,
5.4.7 | Report Data - Desired Goal: 7
dB above Ambient
unconditioned, 5 dB above
Ambient conditioned | | | | | | | | | | | | Continuity | USCAR-2,
Rev. 6,
5.4.4 | No contact with mating contacts during mis-mating. | | | | | | | | F.4 | Polarization
Feature
Effectivenes
s (1 mating
connector
pair per mis-
mating
orientation) | USCAR-2,
Rev. 6,
5.4.4 | 80N | Visual
Inspection | USCAR-2,
Rev. 6,
5.1.8 | With aid of 10X magnification;
No evidence of deterioration,
cracks, deformities, etc., that
could affect their functionality
or distort their appearance. No
deviation from dimensional
tolerances of critical
dimensions. | | | | | | | | F.6 | Connector
Drop
(10 Plug &
Socket
Connector
Cable
Assemblies) | USCAR-2,
Rev. 6,
5.4.8 | 3 Drops of
each unmated
connector
@1m | Visual
Inspection | USCAR-2,
Rev. 6,
5.1.8 | With aid of 10X magnification;
No evidence of deterioration,
cracks, deformities, etc., that
could affect their functionality
or distort their appearance. | | | | | | | Rev A 9 of 14 Notes: 1) Test Group F is not sequential. Each phase above is an independent test with separate sets of samples for each phase. ²⁾ Cable length for Test Phase F.1 may be changed to facilitate laboratory and test equipment requirements. ³⁾ Phase F.5 is applicable to connector systems with secondary locks (TPA's). # • acc. TE (internal Test) Solderability and Resistance to soldering heat | Test Description | Requirement | Procedure | |-------------------------------------|--|---| | Visual- and dimensional examination | Meets requirements of product drawing | according to DIN IEC 60512-1-1 Tests 1a + 1b | | Solderability | acc. to DIN EN60068-2-
20 Ta | Sample pre conditioning Method 1: Solderbath Solder bath temp.: 245°C +/- 3°C Dip duration: 3s +/-0.3s Flux acc. DIN EN60068-2-20 | | Resistance to soldering heat | 109-201, Test Method B,
Condition A | Reflow Soldering Simulation, following reflow profile: -Average ramp rate: 3°C per second maxPreheat temperature (minimum): 150°C -Preheat temperature (maximum): 200°C -Preheat time: 60 to 180 seconds -Ramp to peak: 3°C per second maximum -Time over liquidus (217°C): 60 to 150 seconds -Peak temperature: 245 +0/-5°C -Time within 5°C of peak: 20 to 40 seconds -Ramp - cool down: 6°C per second maxTime 25°C to peak: 8 minutes maximum | Rev A 10 of 14 # 3.5 Qualification and Requalification Test Sequence # • acc. TE HSD-Test-Specification 109-18261 | | Test group | 1 | 3 | 4 | 8 | 14 | 15 | 16 | 17 | 18 | TE | |-------------------------------|----------------------------------|-----------------------|-------------------------------|------------------|--------------------------------|--|----------------------|---------------|-----------------------------------|------------------------------|---------------| | TEST SPECIFICATION
SECTION | | MATING/UNMATING FORCE | POLARIZATION
EFFECITVENESS | PULL TEST | MECHANICAL SHOCK,
VIBRATION | SHIELDING EFFICIENCY
BULKHEAD FEEDTHROUGH | MAXIMUM TEST CURRENT | THERMAL SHOCK | TEMPERATURE / HUMIDITY
CYCLING | HIGH TEMPERATURE
EXPOSURE | SOLDERABILITY | | | Sample size | 10 | 10 ¹⁾ | 10 ²⁾ | 5 | 5 | 5 | 10 | 10 | 10 | 10 | | | Test sequence | | | | | | | | | | | | 5.1. | General | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 5.1.5. | Connector Cycling | | | 4 | 4 | | 4 | 4 | 4 | 4 | | | 5.1.6. | Visual Inspection | 2
5 | 2
5 | 2
8 | 2
23 | 2
5 | 2
6 | 2
23 | 2
23 | 2
23 | 2
5 | | 5.1.7. | Critical Dimensions | 3 | 3 | 3
9 | 3
14 | 3 | 3 | 3
14 | 3
14 | 3
14 | | | 5.1.8. | Circuit Continuity Monitoring | | | 7 | 13 | | | | | | | | 5.2.1. | Mating/Unmating Force Connectors | 4 | | | | | | | | | | | 5.2.3. | Polarization Effectiveness | | 4 | | | | | | | | | | 5.2.4. | Pull Test | | | 7 | | | | | | | | Rev A 11 of 14 | 5.2.8. | Mechanical Shock, Vibration | | | 13 | | | | | | | |-------------------|---|--|---------|----------|---|---|----------|----------|----------|---| | 5.3.1. | Contact Resistance | | 5
10 | 11
21 | | | 11
21 | 11
21 | 11
21 | | | 5.3.2. | Isolation Resistance | | 6
11 | 12
22 | | | 12
22 | 12
22 | 12
22 | | | 5.3.3. | Maximum Test Current (Derating) | | | | | 5 | | | | | | 5.4.1. | Cable Assembly Impedance | | | 5
15 | | | 5
15 | 5
15 | 5
15 | | | 5.4.2. | Propagation delay | | | | | | | | | | | 5.4.3. | Propagation Delay Skew | | | 6
16 | | | 6
16 | 6
16 | 6
16 | | | 5.4.4. | Attenutation | | | 7
17 | | | 7
17 | 7
17 | 7
17 | | | 5.4.6. | Return Loss | | | 8
18 | | | 8
18 | 8
18 | 8
18 | | | 5.4.7. | Maximum Jitter | | | 9
19 | | | 9
19 | 9
19 | 9
19 | | | 5.4.8. | Cross Talk | | | 10
20 | | | 10
20 | 10
20 | 10
20 | | | 5.4.9.
5.4.10. | Shielding Effectiveness
Bulkhead Feedthrough ³⁾ | | | | 4 | | | | | | | 5.5.1. | Thermal Shock | | | | | | 13 | | | | | 5.5.2. | Temperature Humidity Cycling | | | | | | | 13 | | | | 5.5.3. | High Temperature Exposure | | | | | | | | 13 | | | 5.5.4 | Soldering capability | | | | | | | | | 3 | | 5.5.5 | Resistance to soldering heat | | | | | | | | | 4 | Rev A **12** of **14** Minimum 10 samples resp. min. 3 samples per coding per existing coding. Cable assemblies and test setup have to be selected regarding the parameters to be evaluated and to be documented in test report. Bulkhead feed through only applied on 2291366. # • acc. IDB 1394 # Cable Plug to Board Socket Header Configurations | Cable Plug to Board
Socket Header
Configurations | | | | | | | | | | | | | | |---|---|----|-----|-----|-----|----|-----|----------------|-----|-----|----------------|-----|-------| | | Α | В | C.1 | C.2 | C.3 | D | E.1 | E.2 (5) | F.1 | F.3 | F.4 (4) | F.6 | Total | | Pin header, not assembled to PCB | 3 | | 10 | 10 | | 10 | 10 | 10 | 5 | | 3 | 10 | 71 | | Pinheader assembled to PCB | | 10 | | | 3 | | | | | | | | 13 | | Plug Housings with
TPA's
w/o Terminals Installed | | | | | | | | | | 10 | | | 10 | | Plugs assemblies, not terminated to cable | 3 | | | | | | | | | | | | 3 | | Cable assemblies with a Plug assembled to one end, ~ 75 mm long | | | | | | | | | | 10 | 3 | | 13 | | Cable assemblies with
a Plug assembled to
one end, > 75 mm long
(1). | | | 10 | 10 | | 10 | 10 | 10 | | | | | 50 | | Cable assemblies with
a Plug assembled to
one end, > 100 mm
long (2). | | 10 | | | | | | | | | | | 10 | | Cable assemblies with a Plug assembled to one end, >= 1m long. | | | | | | | | | 5 | | | 10 | 15 | | Socket and Plug
assemblies configured
for signal integrity
measurements (3). | | | | | 3 | | | | | | | | 3 | # Numbers of sample required by each performance group regardless of circuit size # Notes: - (1) Samples are to be prepared to facilitate resistance measurements made at points on the wire 75 mm back from the contact/wire termination. - (2) Samples are to be prepared to facilitate clamping the cable 100mm back from the connector housing in a vibration fixture and resistance measurements made at points on the wire 75 mm back from the contact/wire termination. - (3) Samples are to be prepared to facilitate high speed signal integrity measurements. Configurations are to include any necessary SI fixtures. - (4) One connector pair mis-mate orientation. See Test Group F.4 - (5) The same samples are used for phases E.2, E.3, and E.4 Rev A 13 of 14 # 4. QUALITY ASSURANCE PROVISIONS # 4.1 Qualification Testing # A Sample Selection The samples shall be prepared in accordance with product drawings. They shall be selected at random from current production. # **B** Test Sequence Qualification inspection shall be verified by testing samples as specified in Paragraph 3.5. # 4.2 Requalification Testing If changes significantly affecting form, fit or function are made to product or to the manufacturing process, product assurance shall coordinate requalification testing, consisting of all or part of the original testing sequence as determined by the product/development, quality and reliability engineering department. # 4.3 Acceptance Acceptance is based on verification that the product meets the requirements of Paragraph 3.4. Failures attributed to equipment, test setup or operator deficiencies shall not disqualify the product. When product failure occurs, corrective action shall be taken and samples resubmitted for qualification. Testing to confirm corrective action is required before resubmittal. # 4.4 Conformance Inspection The applicable TE quality inspection plan will specify the sampling acceptable quality level to be used. Dimensional and functional requirements shall be in accordance with the applicable product drawing and this specification. Rev A 14 of 14