

Product Specification

Class 1

Product Specification Vehicle Charge Inlet Type CCS 2 with LED – 70mm2

CI 2-32/200

TABLE OF CONTENTS

1.	Sco	pe	2
	.1.	Introduction	
2.	APP	PLICABLE DOCUMENTS	3
2	.1.	TE Connectivity Documents	3
2	.2.	Other Documents	3
3.	REC	QUIREMENTS	4
3	.1.	Design and Construction	4
3	.2.	Material	
3	.3.	Product Ratings	4
3	.4.	Performance and Test Description	6
4.	Tem	perature Rise curves:	7
4	.1.	250A T-Rise curve	
4	.2.	300A T-Rise curve	7
4	.3.	350A T-Rise curve	8

1. SCOPE

1.1. Introduction

The TE CCS2 charging inlet was designed to power electric and hybrid vehicles that comply with standard IEC 62196-3.

The maximum rated current for AC is 32A and for DC is 250A continuous current at Ambient temperature of 20°C at the maximum voltage of 480V for AC and 1000V for DC.

200A DC is supported indefinitely at ambient temperature up to 50°C.

The content of this specification covers the technical characteristics, performance and test requirements for the EV CHARGE INLET Combined Charging System Type 2 further mentioned as CCS2.

When tests are performed the following specifications and standards shall be used. All inspections shall be performed using the applicable inspection plan and customer drawing.

2. APPLICABLE DOCUMENTS

The following mentioned documents are part of this specification. Unless otherwise specified, the latest edition of the documents applies. In the event of conflict between the requirements of this specification and the information contained in the referenced documents, this specification shall take precedence.

2.1. TE Connectivity Documents

General Requirements

Requirement	Description
109-1 Rev. J	General Requirements for Testing

Table 1

Drawings

Drawing	Description
CD-2379769-1	CHARGE INLET ASSY, WITH LED, CCS2
CD-2388502	CHARGE INLET KIT.LED. COMBO 2

Table 2

Specifications

Specification	Description
114-94723	Application Spec. Vehicle Charge Inlet CCS2 with LED
114-94436	Crimp Spec. (90° DC-Contact)
114-13000	Micro MATE-N-LOK Connectors
108-94519	Actuator-Specification

Table 3

2.2. Other Documents

Specification	Description
IEC 62196-1: 2014/06	General requirements
IEC 62196-2: 2016/02	Dimensional compatibility and interchangeability requirements for AC pin and contact-tube accessories
IEC 62196-3: 2014/06	Dimensional compatibility and interchangeability requirements for DC and AC/DC pin and contact-tube vehicle couplers

Table 4

3. REQUIREMENTS

3.1. Design and Construction

The product has been designed to withstand its environment and the effects it has on it.

3.2. Material

The Material data is available in the IMDS (International Material Data System of the Automotive Industry).

3.3. Product Ratings

Dimensions

Mating-Face Geometry

Screw Points

compatible with IEC 62196-2 Sheet 2-IIf and IEC 62196-3 Sheet 3-IVa see Drawing

Environmental conditions

Ambient temperature Max. altitude Protection degree -30 °C +50 °C 5000m above sea-level IP5KX with flaps closed condition IP6KX with flaps opened condition IPX7 Temp. reduce to 85°C

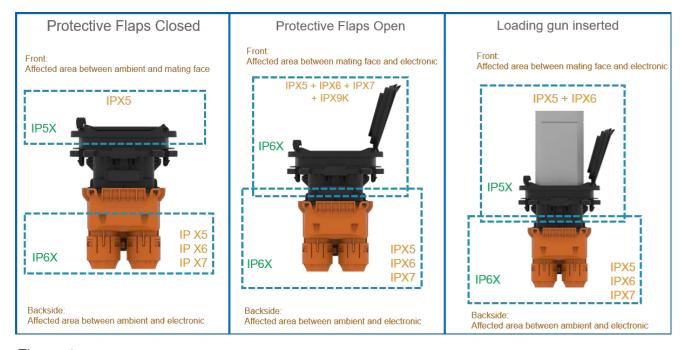


Figure 1

Electrical Properties

Max. charging performance Type of charging current Number of AC-phases Number of Terminals Rated current Rated voltage Signal pin rated current

Signal pin rated voltage Type of signal transmission

Insulation resistance of adjacent contacts

Resistant coding

22 kW (AC) / 200 kW (DC)

AC / DC

9 (PE, L1, L2, L3, L4/N, DC+, DC-, CP, PP)

32A AC / 200A DC 480V AC / 1000V DC

2A 30V Analog $200 m\Omega$

acc. IEC 61851-1

Mechanical Properties

Mating / un-mating endurance Insertion force Retention force

Mechanical Stability of charging socket

Vibration Level

<= 10000 cycles

typical <100N (depending on connector) typical <100N (depending on connector)

max. 500N in all directions (max. Lever-Length 100mm)

LV214 PG17 Severity 2 (Body mount)

Temperature Sensoring

Temperature Sensor Type Type of Sensor Recommended measuring current Sensor tolerance at recommended measuring current Temperature range Shut down

PT1000 **DIN EN 60751** nominal 0.1mA / max. 1mA +/-20 Ohm @ T_{amb} 25°C +/- 5°C -40 to +85°C 85°C measured temperature at sensor (Equivalent to max. contact temperature 90°C)

Actuator

see TE Actuator-Specification TE-108-94519

Installation

 $\begin{array}{ll} \text{Orientation} & \text{see pictures} \\ \text{Max. Angle} & 180^{\circ} \text{-} 60^{\circ} \text{/+} 5^{\circ} \\ \end{array}$

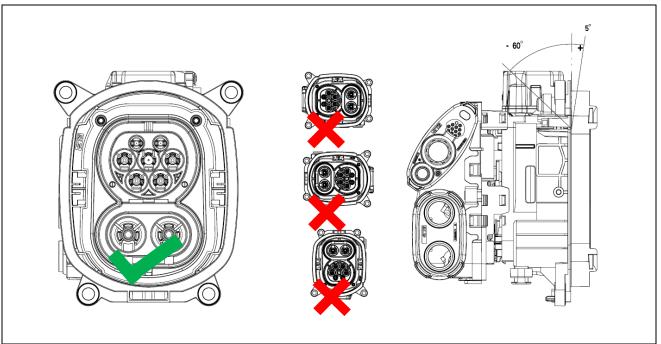
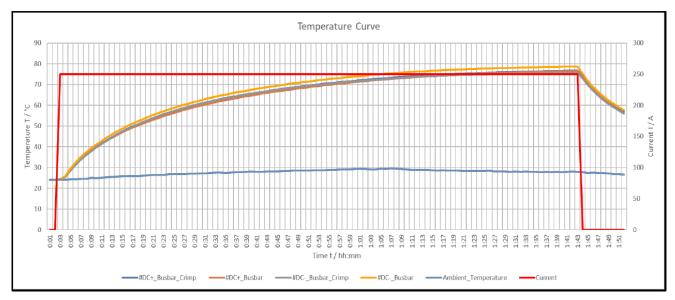
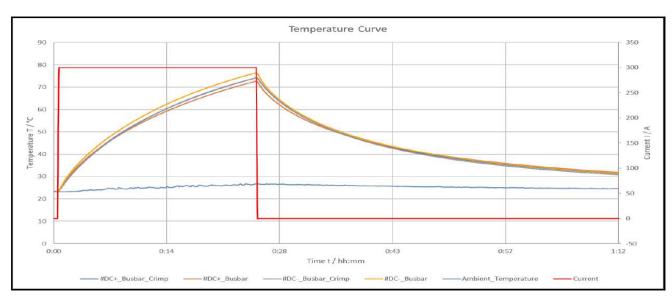


Figure 2


3.4. Performance and Test Description

Specification	Description		
ISO20653	IP6KX – Fixed cable side (Rear Cover) IP5KX – Water and Dust Protection vehicle inlet mated		
IEC 62196-1:2014	Plugs, socket-outlets, vehicle connectors and vehicle inlets – Conductive charging of electric vehicles – Part 1: General requirements		
IEC 62196-2:2016	Plugs, socket-outlets, vehicle connectors and vehicle inlets – Conductive charging of electric vehicles – Part 2: Dimensional compatibility and interchangeability requirements for a.c. pin and contact-tube accessories		
IEC 62196-3:2014	Plugs, socket-outlets, vehicle connectors and vehicle inlets – Conductive charging of electric vehicles – Part 3: Dimensional compatibility and interchangeability requirements for d.c.and a.c./d.c. pin and contact-tube vehicle couplers		
Additional: selected tests of automotive standards LV124, LV214, LV215-2			

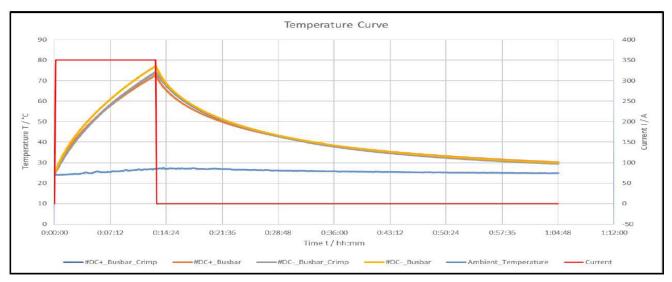
4. TEMPERATURE RISE CURVES:


4.1. 250A T-Rise curve

250A continuous current at Ambient temperature of 20°C

Figure 3

4.2. 300A T-Rise curve



300A continuous current until 26 min at Ambient temperature of 20°C

Figure 4

4.3. 350A T-Rise curve

350A continuous current until 13 min at Ambient temperature of 20°C

Figure 5

LTR	REVISION RECORD	DWN	APP	DATE
Α	INITIAL DOCUMENT	SUPRIYA S	DANAPPA H	27 SEP 2021
A 1	SCOPE INTRODUCTION UPDATED IN CHAPTER 1.1 TEMPERATURE RISE CURVE FIGURE 1, FIGURE 2, AND FIGURE 3 ADDED IN CHAPTER 4	SUPRIYA S	AMRUTHA RAO C H	30 AUG 2023
A2	CHAPTER 4: TEMPERATURE RISE CURVE FIGURE 1, FIGURE 2, AND FIGURE 3 ADDED CHAPTER 3.3: TEMPERATURE SENSORING SHUT DOWN TEMPERATURE UPDATED FROM 90°C to 85°C	SUPRIYA S	AMRUTHA RAO C H	29 NOV 2023