

Product Specification

Class 1

CI 2-32/500

Product Specification Vehicle Charge Inlet Type CCS 2 – 120mm2

TABLE OF CONTENTS

1.	Scop	De	2
1.1	1.	Introduction	2
2.		PLICABLE DOCUMENTS	
2.	1.	TE Connectivity Documents	3
2.2	2.	Other Documents	4
3.	REC	QUIREMENTS	5
3.	1.	Design and Construction	5
3.2	2.	Material	5
3.3	3.	Product Ratings	5
3.4	4.	Performance requirements and Test descriptions	7
3.	5.	Test Requirements and procedures summary:	8
4.	Tem	perature Rise curves:	. 11
4.		500A T-Rise curve	
4.2	2.	600A T-Rise curve	. 12
4.3	3.	700A T-Rise curve	. 12

1. SCOPE

1.1. Introduction

The TE CCS2 charging inlet was designed to power electric and hybrid vehicles that comply with standard IEC 62196-3.

The maximum rated current for AC is 32A at the maximum voltage of 480V.

The maximum rated current for DC is 500A continuously with cooled connector and 1000V.

The maximum rated current for DC is 600A for 50min with cooled connector and 1000V.

The maximum rated current for DC is 700A for 8min with cooled connector and 1000V.

The maximum rated current for DC is 335A with uncooled connector and 1000V.

The content of this specification covers the technical characteristics, performance and test requirements for the EV CHARGE INLET Combined Charging System Type 2 further mentioned as CCS2.

When tests are performed the following specifications and standards shall be used. All inspections shall be performed using the applicable inspection plan and customer drawing.

2. APPLICABLE DOCUMENTS

The following mentioned documents are part of this specification. Unless otherwise specified, the latest edition of the documents applies. In the event of conflict between the requirements of this specification and the information contained in the referenced documents, this specification shall take precedence.

2.1. TE Connectivity Documents

General Requirements

Requirement	Description	
109-1 Rev. J	General Requirements for Testing	

Table 1

Drawings

Optional LED indicators, for more information see customer drawings.

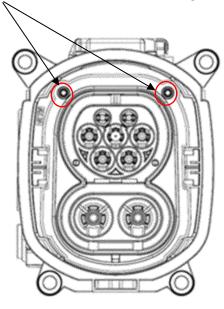


Figure 1

Drawing	Description
CD-2401362	Charge Inlet, Assy, CCS2

Table 2

Specifications

Specification	Description
114-94757	Application Specification EV Charge Inlet CCS2
114-94842	Ultrasonic Weld Connection Spec. (180° DC-Contact)
114-13000	Micro MATE-N-LOK Connectors
108-94519	Actuator-Specification

Table 3

2.2. Other Documents

Specification	Description
IEC 62196-1: 2014/06	General requirements
IEC 62196-2: 2016/02	Dimensional compatibility and interchangeability requirements for AC pin and contact-tube accessories
IEC 62196-3: 2014/06	Dimensional compatibility and interchangeability requirements for DC and AC/DC pin and contact-tube vehicle couplers
SAE J1772: 2016/02	SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler

Table 4

3. REQUIREMENTS

3.1. Design and Construction

The product has been designed to withstand its environment and the effects it has on it.

3.2. Material

The Material data is available in the IMDS (International Material Data System of the Automotive Industry).

3.3. Product Ratings

Dimensions

Mating-Face Geometry

Screw Points

compatible with IEC 62196-2 Sheet 2-IIf and IEC 62196-3 Sheet 3-IVa See Drawing

Environmental conditions

Ambient temperature Max. altitude Protection degree -40 °C +50 °C 5000m above sea-level IP5KX with flaps closed condition IP6KX with flaps opened condition IPX7 Temp. reduce to 85°C

Figure 2

Electrical Properties

Max. charging performance 22 kW (AC) / 500 kW (DC)

Type of charging current AC / DC

Number of AC-phases 3 Number of Terminals 9 (PE, L1, L2, L3, L4/N, DC+, DC-, CP, PP)

Rated current 32A AC / 500A DC Rated voltage 480V AC / 1000V DC

Signal pin rated current 2A Signal pin rated voltage 30V Type of signal transmission Analog Insulation resistance of adjacent contacts 200M Ω

Resistant coding acc. IEC 61851-1

White/Green/Red/Blue nom. Voltage11V/20mA Allowed Voltage Range 8...16V

Mechanical Properties

Light option

Mating / un-mating endurance <= 10000 cycles

Insertion force typical <100N (depending on connector)
Retention force typical <100N (depending on connector)

Mechanical Stability of charging socket max. 500N in all directions (max. Lever-Length 100mm)

Vibration Level ISO 16750-3 Test VII

Temperature Sensoring

Temperature Sensor Type PT1000
Type of Sensor DIN EN 60751

Recommended measuring current nominal 0.1mA / max. 1mA continuous or

corresponding pulse/pause ratio

Temperature Sensor Offset DC (steady state) max. -5K
Temperature Sensor Offset AC (steady state) -12K TYP.

Proposed Shutdown DC -continuous monitored dT/dt (Temperature rise per time) > 1,5K/sec

Delta T between DC+ and DC- >12K

85°C measured temperature at sensor

(Equivalent to max. contact temperature 90°C)

Proposed Shutdown AC 78°C measured temperature at sensor (Equivalent to max. contact temperature 90°C)

Actuator

see TE Actuator-Specification TE-108-94519

Installation

Orientation Max. Angle See pictures 180°-60°/+5°

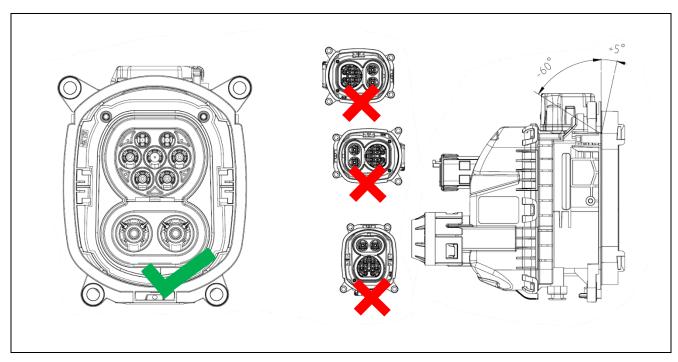


Figure 3

3.4. Performance requirements and Test descriptions

The product shall be designed to meet the electrical, mechanical, and environmental performance requirements specified in table 5. All tests shall be performed in the room temperature, unless otherwise specified.

3.5. Test Requirements and procedures summary:

General Test

Test Items	Requirements	Procedures			
OPTICAL INSPECTIONS					
Visual and Dimensional examination	Meets requirements of product drawing	Acc. To DIN EN 60512-1-1:2003- 01, E 0.1			
	MECHANICAL INSPECTIONS				
Mechanical stability of the charging socket	Max. Force at initial crack; >500N.	At a mated condition of dummy plug and charge inlet HSG, Max. initial breakage force applied on the dummy plug at 100mm distance recorded.			
		As per Special mechanical test			
	The latch must be checked by pulling the inserted pins ≤ 10N	The primary locking latch device must latch with an audible click while pins insertion and checked by pulling the pins by force ≤10N			
Function of the Primary and		Acc. to LV214: 2010-03, E 6.2			
Secondary lock / latch play	At the final stop, it must be possible to lock the secondary locking device.	At final position of secondary lock, it should be locked. Acc. to LV214: 2010-03, E 6.3			
	Closing forces of the secondary lock	The secondary lock actuation			
	Closing Force of Sec. Lock AC F _C < 50N	from pre-lock to end-lock Fc < 50N			
	Closing Force of Sec. Lock DC Fc < 50N	Acc. to LV214: 2010-03, E 6.4			
Actuation forces of the secondary lock	Closing NOK forces of the secondary lock, selectively loaded	The secondary lock actuation from pre-lock to end-lock at contact pin half insertion Fc NOK > Fc + 50N			
	Closing NOK Force of Sec. Lock DC $F_{C \text{ NOK}} > F_{C} + 50N$	Acc. to LV214: 2010-03, E 6.4			

	Camtast incontis	an favoro		
	Contact insertion forces			
	Value Determination		Acc. to LV214:2010-03, E 8.1	
	Contact removal force, Primary lock only			
		ar roroo, r rimary rook oring		
	Contact Ø3, CP and PP F _{S≤1mm} > 120N			
Contact retention in the charge	Contact Ø6, PE	F _{S≤1mm} > 120N	Acc. to LV214:2010-03, E 8.2.1	
inlet housing	Contact Ø6 A0	C F _{S≤1mm} > 120N	7.66. 16 272. 1.26.16 66, 2 6.2.1	
	Contact Ø8, D0	C F _{S≤1mm} > 180N		
	Contact remova	al force, Primary and		
	secondary lock			
			-	
	Value Determir	nation		
	No physical damage of housings			
	and contacts, no derogation of			
Vibration Test	function; the connection may not			
The same of the sa	open during the test.			
Y 2				
10	Test VII Commercial vehicle, sprung			
	masses, Table 12		Acc. To ISO16750-3:2012,	
0,1	Table 12 — Values for PSD and frequency		4.1.2.7	
0.01	Frequency	PSD	(Acceleration 57.9 m/s² (5g))	
10 100 1 000 X Key	Hz 10	(m/s ²) ² /Hz 18	(Noccionation of to this (og))	
X frequency, Hz Y power spectral density, (m/s ²) ² /Hz	20	36		
 standard random test profile additional profile in case of f_n < 30 Hz 	30	36		
	180 2 000	1		
	NOTE r.m.s. acceleration value = 57,9 m/s ² .			
Mechanical shock	Operation mode not in function			
a 🛉	Level of sharpness level 2		Acc. to ISO 16750-1, 4.2.2.2	
50g	Acceleration 500 m/s² (50g)		7.00. 10 100 107 00-1, 4.2.2.2	
	Pulse form half-sinusoidal		(10 successive shocks in 3 axis	
	Pulse duration 6 ms		X, Y and Z is 30 shocks)	
	Number of axes 3 axis (X, Y, Z)		, 1 3	
	Shocks per axis 10 shocks (10 per			
	direction)			
6ms t Total number of shocks 30 shock				

ELECTRICAL INSPECTIONS					
	Measure the 4,4kOhm Coding-Resistor, R5				
	Measure the resistance of the signal pins to the related 12pos header pins.				
Functional Test	Check the PCB socket contacts for wear Measure the three temperature sensors and validate versus actual charge inlet temperature	As per customer drawing			
	Drive actuator in lock and unlock position as per drawing				
	Measure contact resistance for all power contact terminals (AC, PE, and DC)				
	The product requirements shall be maintained during the test.	Acc. to IEC 60068-2-2 (Vibration)			
Temperature Shock	T _{min} - 40°C, T _{max} 85°C Dwell Time - 45min each, 144 cycles	Acc. to IEC 60068-2-14 (Environment)			
Insulation Resistance	$R_{\text{iso}} > 200 \text{M}\Omega$ at 1000V DC	Acc. to ISO 60512-3-1			
Temperature Rise	Temperature Rise with HPC (High power charging) cooling system Supplied current 500A, 600A, and 700A to inlet, Monitoring T-rise, terminal temp. 90°C max. Refer Figure 4, Figure 5 and Figure 6 for T-Rise curve	-			
ENVIRONMENTAL INSPECTIONS					
		Acc. To IEC 60068-2-2			
Aging in Dry Heat	The product requirements shall be maintained during the test.	Temp 85°C Test Duration - 120 h			
Humidity	The product requirements shall be maintained during the test. The test is concluded with functional test in normal climate.	Acc. to IEC 60068-2-78 Temp 65°C 93% humidity 100h			

		Acc. To below specs
Degree of Protection	Grade Dust (with flap closed) - IP5KX - IP6KX Water (with flap removed) - IPX5 - IPX6 - IPX7 - IPX9K	ISO 20653 – High velocity water ISO 20654 – Strong high velocity water ISO 20656 – High pressure/steam-jet cleaning
	No medium must penetrate in quantities, which do not impair performance and study (possible use of water finding paste and visual inspection)	ISO 20655 – Temporary Immersion ISO 20657 – Dust protection
Table 5		ISO 20659 - Dust Tight

Table 5

4. TEMPERATURE RISE CURVES:

4.1. 500A T-Rise curve

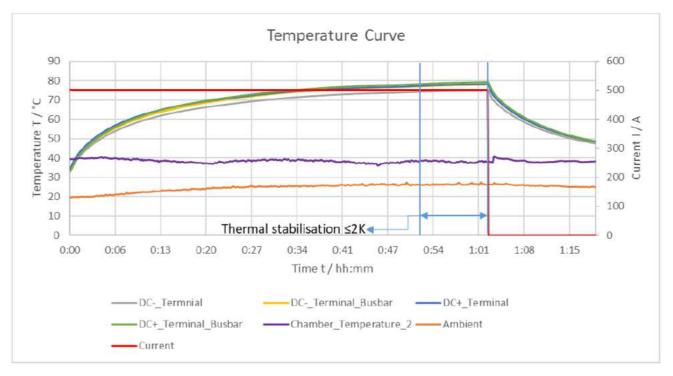


Figure 4

4.2. 600A T-Rise curve

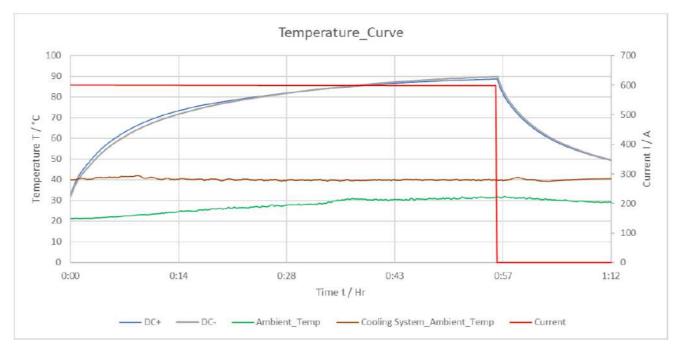


Figure 5

4.3. 700A T-Rise curve

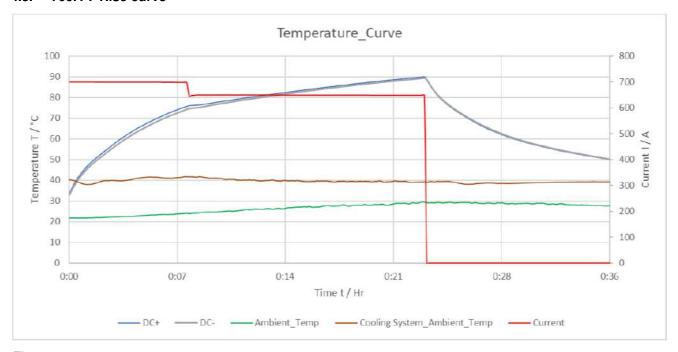


Figure 6

At 8 min, our coolant returns flow temperature from DC- and DC+ crossing safety temperature limit of 85°C as per our Huber and Suhner HPC500 cooling system safety manual. Current was reduced by 50A(From 700A to 650A) to keep coolant return temperature within 85°C.

<u>LTR</u>	REVISION RECORD	<u>DWN</u>	<u>APVD</u>	<u>DATE</u>
Α	INITIAL DOCUMENT	SUPRIYA S	KASHYAP P B	30 JUNE 2023
A1	SHEET 1: Test Requirements and Procedures Summary SHEET 3: Specifications	RAKSHITH N	KASHYAP P B	10 JULY 2023
A2	Scope introduction updated in chapter 1.1. Figure 2 image updated in chapter 3.3. Electrical inspections – T-Rise updated in chapter 3.5. Temperature Rise curve figure 4, Figure 5, Figure 6 added	SUPRIYA S	KASHYAP P B	27 JULY 2023
А3	Temperature rises at 700A statement updated in Chapter 4.3	SUPRIYA S	KASHYAP P B	30 NOVEMEBER 2023