

Product Specification

Class 1

CI 1-32/500

Product Specification Vehicle

Charge Inlet Type CCS 1 – 95mm2

TABLE OF CONTENTS

1.	Sco	pe	2
1	.1.	Introduction	2
2.	APP	LICABLE DOCUMENTS	3
2	.1.	TE Connectivity Documents	3
2	.2.	Other Documents	4
3.	REC	QUIREMENTS	5
3	.1.	Design and Construction	5
3	.2.	Material	5
3	.3.	Product Ratings	5
З	.4.	Performance and Test Description	7
3	.5.	Test Requirements and procedures summary:	8
4.	Tem	perature Rise curves: 1	1
4	.1.	500A T-Rise curve 1	1

1. SCOPE

1.1. Introduction

The TE CCS2 charging inlet was designed to power electric and hybrid vehicles that comply with standard IEC 62196-3.

The maximum rated current for AC is 32A at the maximum voltage of 250V.

The maximum rated current for DC is 335A continuously with 1000V.

The maximum rated current for DC is 350A continuously with cooled connector and 1000V.

The maximum rated current for DC is 500A for 12min with cooled connector and 1000V.

The content of this specification covers the technical characteristics, performance and test requirements for the EV CHARGE INLET Combined Charging System Type 1 further mentioned as CCS1.

When tests are performed the following specifications and standards shall be used. All inspections shall be performed using the applicable inspection plan and customer drawing.

2. APPLICABLE DOCUMENTS

The following mentioned documents are part of this specification. Unless otherwise specified, the latest edition of the documents applies. In the event of conflict between the requirements of this specification and the information contained in the referenced documents, this specification shall take precedence.

2.1. TE Connectivity Documents

General Requirements

Requirement	Description
109-1 Rev. J	General Requirements for Testing

Table 1

Drawings

Optinal LED indicators, for more information see CD drawings.

Figure 1

Drawing	Description
CD-2402048	Charge Inlet, Assy, CCS1 Kit

Table 2

Specifications

Specification	Description	
114-94809	Application Specification EV Charge Inlet CCS1	
114-XXXXX	Ultrasonic Weld Connection Spec. (180° DC-Contact)	
114-13000	Micro MATE-N-LOK Connectors	
108-94519	Actuator-Specification	

Table 3

2.2. Other Documents

Specification	Description
IEC 62196-1: 2014/06	General requirements
IEC 62196-2: 2016/02	Dimensional compatibility and interchangeability requirements for AC pin and contact-tube accessories
IEC 62196-3: 2014/06	Dimensional compatibility and interchangeability requirements for DC and AC/DC pin and contact-tube vehicle couplers
IEC TS 62196-3-1: 2020/03	Vehicle connector, vehicle inlet and cable assembly for DC charging intended to be used with a thermal management system
SAE J1772: 2016/02	SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler

Table 4

3. **REQUIREMENTS**

3.1. Design and Construction

The product has been designed to withstand its environment and the effects it has on it.

3.2. Material

The Material data is available in the IMDS (International Material Data System of the Automotive Industry).

3.3. Product Ratings

Dimensions

Mating-Face Geometry

Screw Points

Environmental conditions

Ambient temperature Max. altitude Protection degree compatible with IEC 62196-2 Sheet 2-I and IEC 62196-3 Sheet 3-IIIa See Drawing

-40 °C +50 °C 5000m above sea-level IP5KX with flaps closed condition IP6KX with flaps opened condition IPX7 Temp. reduce to 85°C

Electrical Properties

Max. charging performance Type of charging current Number of AC-phases Number of Terminals Rated current Rated voltage Signal pin rated current Signal pin rated voltage Type of signal transmission Insulation resistance of adjacent contacts Resistant coding Light Option

Mechanical Properties

Mating / un-mating endurance 10000 cycles Insertion force typical <100N (depending on connector) Retention force typical <100N (depending on connector) Mechanical Stability of charging socket max. 500N in all directions

Vibration Level

Temperature Sensoring

Temperature Sensor Type Type of Sensor Recommended measuring current

Temperature Sensor Offset DC (steady state) Temperature Sensor Offset AC (steady state) Proposed Shutdown DC

Proposed Shutdown AC

Sensor tolerance at recommended measuring current Temperature range Shut down

Actuator

See TE Actuator-Specification TE-108-94519

11 kW (AC) / 500 kW (DC) AC / DC 7 (PE, L1, L2/N, DC+, DC-, CS, CC) 0A AC / 32A AC / 500A DC 0V AC / 250V AC / 600V DC (1000V possible) 2A 30V Analog 200MΩ acc. IEC 61851-1 White/Green/Red/Blue nom. Voltage11V/20mA Allowed Voltage Range 8...16V

(max. Lever-Length 100mm) LV214 PG17 Severity 2 (Body mount)

PT1000 **DIN EN 60751** nominal 0.1mA / max. 1mA continuous or corresponding pulse/pause ratio

max. -5K -12K TYP. - continuous monitored dT/dt (Temperature rise per time) > 1,5K/sec Delta T between DC+ and DC- >12K

85°C measured temperature at sensor (Equivalent to max. contact temperature 90°C)

78°C measured temperature at sensor (Equivalent to max. contact temperature 90°C)

+/-20 Ohm @ Tamb 25°C +/- 5°C -40 to +85°C 90°C (equivalent to a PT1000 value 1347,07Ω)

Installation

Orientation Max. Angle see picture below 180° -60°/+5°

3.4. Performance and Test Description

The product shall be designed to meet the electrical, mechanical, and environmental performance requirements specified in table 5. All tests shall be performed in the room temperature, unless otherwise specified.

3.5. Test Requirements and procedures summary:

General Test

Test Items	Requirements	Procedures		
OPTICAL INSPECTIONS				
Visual and Dimensional examination	Meets requirements of product drawing	Acc. To DIN EN 60512-1-1:2003- 01, E 0.1		
	MECHANICAL INSPECTIONS			
Mechanical stability of the charging socket	Max. Force at initial crack; >500N.	At a mated condition of dummy plug and charge inlet HSG, Max. initial breakage force applied on the dummy plug at 100mm distance recorded. As per Special mechanical test		
Function of the Primary and	The latch must be checked by pulling the inserted pins ≤ 10N	The primary locking latch device must latch with an audible click while pins insertion and checked by pulling the pins by force ≤10N Acc. to LV214: 2010-03, E 6.2		
Secondary lock / latch play				
	At the final stop, it must be possible to lock the secondary locking device.	At final position of secondary lock, it should be locked. Acc. to LV214: 2010-03, E 6.3		
	Closing forces of the secondary lock	The secondary lock actuation		
	Closing Force of Sec. Lock AC $F_{\rm C}$ < 50N	from pre-lock to end-lock $F_c < 50N$		
	Closing Force of Sec. Lock DC $F_C < 50N$	Acc. to LV214: 2010-03, E 6.4		
Actuation forces of the secondary lock	Closing NOK forces of the secondary lock, selectively loaded Closing NOK Force of Sec. Lock AC $F_{C NOK} > F_{C} + 50N$ Closing NOK Force of Sec. Lock DC $F_{C NOK} > F_{C} + 50N$	The secondary lock actuation from pre-lock to end-lock at contact pin half insertion Fc NOK > Fc + 50N Acc. to LV214: 2010-03, E 6.4		

	Contact insertion forces		
	Value Determination	Acc. to LV214:2010-03, E 8.1	
	Contact removal force, Primary lock only		
	Contact Ø3, CP and PP Fs≤1mm > 120N		
Contact retention in the charge	Contact Ø6, PE F _{S≤1mm} > 120N	Acc. to LV214:2010-03, E 8.2.1	
inlet housing	Contact Ø6, AC F _{S≤1mm} > 120N		
	Contact Ø8, DC Fs≤1mm > 180N		
	Contact removal force, Primary and		
	secondary lock	-	
	Value Determination		
	No physical damage of housings		
	and contacts, no derogation of		
Vibration Test	function; the connection may not		
	open during the test.		
Y 2 100	Test VII Commercial vehicle, sprung		
	masses, Table 12	Acc. To ISO16750-3:2012,	
0,1	Table 12 — Values for PSD and frequency	4.1.2.7	
0,01 10 100 1 000 X	Frequency PSD Hz (m/s²)²/Hz	(Acceleration 57.9 m/s ² (5g))	
Key X frequency, Hz	10 18		
Y power spectral density, (m/s ²) ² /Hz 1 standard random test profile	20 36		
2 additional profile in case of $f_n < 30 \text{ Hz}$	30 36		
	2 000 1		
	NOTE r.m.s. acceleration value = 57,9 m/s ² .		
	Onevetion mode not in function		
Mechanical shock	Operation mode not in function		
a 🛉	Level of sharpness level 2		
50g	Acceleration 500 m/s ² (50g)	Acc. to ISO 16/50-1, 4.2.2.2	
	Pulse form half-sinusoidal		
	Pulse duration 6 ms	(10 successive shocks in 3 axis X, Y and Z is 30 shocks)	
	Number of axes 3 axis (X, Y, Z)		
	Shocks per axis 10 shocks (10 per		
	direction)		
6ms t	Total number of shocks 30 shocks		

ELECTRICAL INSPECTIONS				
	Measure the 4,4kOhm Coding-Resistor, R5			
	Measure the resistance of the signal pins to the related 12pos header pins.			
Functional Test	Check the PCB socket contacts for wear Measure the three temperature sensors and validate versus actual charge inlet temperature	As per customer drawing		
	Drive actuator in lock and unlock position as per drawing			
	Measure contact resistance for all power contact terminals (AC, PE, and DC)			
	The product requirements shall be maintained during the test.	Acc. to IEC 60068-2-2 (Vibration)		
Temperature Shock	T _{min} - 40°C, T _{max} 85°C Dwell Time - 45min each, 144 cycles	Acc. to IEC 60068-2-14 (Environment)		
Insulation Resistance	R _{iso} > 200MΩ at 1000V DC	Acc. to ISO 60512-3-1		
Temperature Rise	Temperature Rise with HPC (High power charging) cooling system Supplied current 500A, 600A, and 700A to inlet, Monitoring T-rise, terminal temp. 90°C max.	-		
	T-Rise curve			
ENVIRONMENTAL INSPECTIONS				
Aging in Dry Heat	The product requirements shall be maintained during the test.	Acc. To IEC 60068-2-2 Temp 85°C Test Duration - 120 h		
Humidity	The product requirements shall be maintained during the test. The test is concluded with functional test in normal climate.	Acc. to IEC 60068-2-78 Temp 65°C 93% humidity 100h		

		Acc. To below specs
Degree of Protection	Grade Dust (with flap closed) - IP5KX - IP6KX Water (with flap removed) - IPX5 - IPX6 - IPX7 - IPX9K	ISO 20653 – High velocity water ISO 20654 – Strong high velocity water ISO 20656 – High pressure/steam-jet cleaning
	1) No medium must penetrate in quantities, which do not impair performance and study (possible use of water finding paste and visual inspection)	ISO 20655 – Temporary Immersion ISO 20657 – Dust protection
		ISO 20659 – Dust Tight

Table 5

4. TEMPERATURE RISE CURVES:

4.1. 500A T-Rise curve

500A continuous current until 12 min at Ambient temperature of 20°C

Figure4

LTR	REVISION RECORD	DWN	APVD	DATE
1	INITIAL DOCUMENT	SUPRIYA S	AMRUTHA R C H	21 DECEMBER 2023
Α	RELEASE TO PRODUCTION	SUPRIYA S	AMRUTHA R C H	1 FEBRUARY 2024