

Engineering Report

POSITIVE-LOCK, MKIII, .250 SERIES

1. INTRODUCTION

1.1 Purpose

Testing was performed on RECEPTACLE, POSITIVE-LOCK, MKIII, .250 SERIES 1Pos connectors to determine its conformance related to the performance requirements.

1.2 Scope

This report covers the electrical and mechanical performance of RECEPTACLE, POSITIVE-LOCK, MKIII, .250 SERIES 1Pos connectors. Testing was performed at the Shanghai Electrical Components Test Laboratory between Jan. 23, 2019 and Jan. 24, 2019. The associated test number is TP-19-00025.

1.3 Conclusion

All part numbers listed in Table 1 confirmed to the performance requirements.

1.4 Test Specimens

Specimens with the following part numbers were used for test:

Table 1

P/N	Description	Quantity (pcs)	Note
2-521120-3	HOUSING, RECEPTACLE, POSITIVE-LOCK, MKIII, .250 SERIES	5	/
63306-1	FASTON 250 REC 18-14 AWG BR	5	/

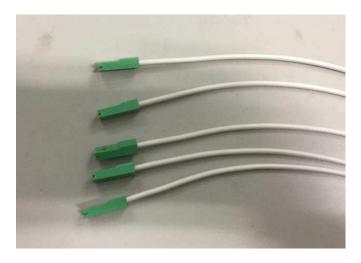


Fig.1

1.5 Test Sequence

The specimens listed in Table 1 were subjected to the test sequences listed in Table 2.

Table 2

Took like on	Test Group (a)	
Test Item	Test Sequence (b)	
Dielectric Withstanding Voltage	2	
Contact Insertion Force	1	
Contact Retention Force	3	

Note: a). Test group defined per customer requirement

b). Numbers indicate sequence in which tests are performed.

1.6 Environmental Conditions

Unless otherwise stated, the following environmental conditions prevailed during testing:

Temperature: 15°C to 35°C Relative Humidity: 25% to 75%

2. TEST PROCEDUES

2.1 Dielectric Withstanding Voltage

Hold at 3.4 KV AC at sea level for 1 minute. Test between adjacent contacts and between housing and closest contacts in a mated connector.

Requirement: 1-minute hold without a creep discharge or flashover.

Current Leakage: 5 mA (maximum)

Test Method: EIA-364-20, Method A, Condition 1.

2.2. Contact Insertion Force

Measure the force required to insert contact into housing. Operation Speed: 25.4 mm/min.

Requirement: 18N Maximum Test Method: EIA-364-05.

2.3. Contact Retention Force

Measure the axial force required to remove contact from the housing with and without a TPA accessory. Operation

Speed: 25.4 mm/min. Requirement: 80N Minimum Test Method: EIA-364-29.

3. SUMMARY OF TESTING

3.1 Dielectric Withstanding Voltage Test result are shown in Table 3.

Table 3

Group	Quantity	Condition	Requirement	Results
1	5	Initial	No breakdown or flashover.	Meet spec.

Rev B 2 of 3

3.2. Contact Insertion Force

Test result are shown in Table 4.

Table 4

			rabio i	Unit: N
Group	Quantity	Condition	Requirement	Results
1	5	Initial	18 (max.)	Meet spec.

3.3. Contact Retention Force

Test result are shown in Table 5.

Table 5

				Unit: N
Group	Quantity	Condition	Requirement	Results
1	5	Initial	80N (min.)	Meet spec.

4. CALIBRATION

4.1 Calibration Statement

All equipment containing a calibration number is calibrated and traceable through TE Connectivity (TE).

5. VALIDATION

Requested by	: Shukla, Divya	2019	01 04		
Product Engin	eer				
TE Connectivity USA product engineer					
Prepared by:					
r repared by.	Wintan Feng	2019	02 14		
	Vintair i ong		/		
Test Engineer					
Shanghai Electrical Components Test Lab.					
Approved by:					
Approved by.	Robin Lu	2019	02 14		
	1100111 20		/		
Manager					
Shanghai Electrical Components Test Lab.					

Rev B 3 of 3