

CSE-SGAM-ccc-SGFB

SMA Bulkhead Jack to SMA Plug Cable Assembly

The CSE-SGAM-ccc-SGFB cable assembly provides an SMA bulkhaed jack (female socket) to SMA plug (male pin) connection with the option of 12 in ., 24 in., or 36 in . lengths of RG-316/U coaxial cable.

Operating from O Hz to 12.4 GHz , the CSE-SGAM- ccc-SGFB cable assembly combines superior performance, compact size, and a convenient threaded mating interface to provide a reliable, easy-to-use cable assembly. Additionally, all Linx coaxial cables and connectors meet RoHS lead free standards and are tested to meet requirements for corrosion resistance, vibration, mechanical and thermal shock.

FEATURES

- O to 12.4 GHz operation
- SMA jack (female socket)
- Gold plated brass washer and $1 / 4$ "-36UNS hex nut provided
- SMA plug (male pin)
- Gold plated brass
- RG-316/U 50Ω coaxial cable

APPLICATIONS

- LPWA
- Cellular IoT - LTE-M (Cat-M1), NB-IoT
- Cellular - 5G/4G LTE/3G/2G
- PC, LAN
- ISM - Bluetooth ${ }^{\oplus}$, ZigBee ${ }^{\oplus}$
- GNSS - GPS, Galileo, GLONASS, BeiDou, QZSS
- Automotive, Industrial, Commercial, Enterprise

TABLE 1. ELECTRICAL SPECIFICATIONS

Parameter	Value		
Insertion Loss (dB max)	CSE-SGAM-305-SGFB	CSE-SGAM-610-SGFB	CSE-SGAM-914-SGFB
	2.1	2.8	3.7
VSWR (max)	1.8	1.7	1.7
Impedance		50Ω	
Insulation Resistance		$3000 \mathrm{M} \Omega \mathrm{min}$.	

ORDERING INFORMATION

Part Number	Description
CSE-SGAM-305-SGFB	SMA bulkhead jack (female socket) to SMA plug (male pin) on 305.0 mm
(12.0 in) of RG-316/U coaxial cable	

Available from Linx Technologies and select distributors and representatives.

PRODUCT DIMENSIONS

TABLE 2. CABLE ASSEMBLY COMPONENTS

Item \#	Description	Material	Finish
1	Connector, SMA plug (male pin)	Brass	Gold
2	RG-316/U coaxial cable	RG-316/U	Black
3	Connector, SMA bulkhead jack (female socket) with hex nut and washer	Brass	Gold
4	Heat Shrink Tubing	PTFE	Black

TABLE 2. CABLE ASSEMBLY COMPONENTS

Parameter	Connector A SMA plug (male pin)	Connector B SMA bulkhead jack (female socket)
Fastening Type	1/4"-36 UNS-2B threaded coupling	1/4"-36 UNS-2A threaded coupling
Recommended Torque	0.9 N m (8.0 in lbs)	0.9 N m (8.0 in lbs)
Coupling Nut Retention	$60 \mathrm{lbs} . \mathrm{min}$.	$60 \mathrm{lbs} . \mathrm{min}$.
Connector Durability	500 cycles min.	500 cycles min.
Weight	$\begin{aligned} & \text { CSE-SGAM-305-SGFB }=11.6 \mathrm{~g}(0.41 \mathrm{oz}) \\ & \text { CSE-SGAM-610-SGFB }=16.1 \mathrm{~g}(0.57 \mathrm{oz}) \\ & \text { CSE-SGAM-914-SGFB }=20.5 \mathrm{~g}(0.72 \mathrm{oz}) \end{aligned}$	

RECOMMENDED MOUNTING

Figure 2 shows the recommended mounting hole dimensions for the SMA connector (bulkhead) end of the cable assembly. Hex nut torque should not exceed $10.0 \mathrm{in} / \mathrm{lbs}$ max or damage may occur to threads. Maximum enclosure wall thickness $=3.2 \mathrm{~mm}$ (0.13 in)

Figure 2. Recommended Mounting Hole Dimensions for the CSE-SGAM-ccc-SGFB Cable Assembly

COAXIAL CABLE SPECIFICATIONS

Figure 3. Coaxial Cable Cutaway Diagram

TABLE 4. COAXIAL CABLE MATERIAL SPECIFICATIONS FOR RG-316/U

Parameter	Material	Dimensions
Inner-Conductor	Silver-coated Copper plated steel, 7 strand, $0.175 \mathrm{~mm} /$ conductor	$\varnothing 0.53 \mathrm{~mm}(0.020 \mathrm{in})$
Dielectric	PTFE	$\varnothing 1.53 \mathrm{~mm}(0.06 \mathrm{in})$
Outer-Conductor	Silver plated copper braid, Coverage 92.3%	$\varnothing 1.71 \mathrm{~mm}(0.067 \mathrm{in})$
Jacket	FEP	$\varnothing 2.53 \mathrm{~mm}(0.100 \mathrm{in})$

TABLE 5. COAXIAL CABLE ELECTRICAL AND PHYSICAL SPECIFICATIONS FOR RG-316/U

Parameter	Value					
Rated Temp Voltage	$105^{\circ} \mathrm{C} 30 \mathrm{~V}$					
Conductor Resistance	$302 \Omega / \mathrm{km} 20^{\circ} \mathrm{C}$					
Insulation Resistance	$3000 \mathrm{M} \Omega$-km min.					
Dielectric Strength	AC $1000 \mathrm{~V} / \mathrm{Minute}$					
Spark Test	5 kV					
Insulation	Unaged	Tensile Strength		2500 psi min. ($1.76 \mathrm{~kg} / \mathrm{mm} 2)$		
			ation	200\% min.		
	Aged	Tensile Strength		Unaged min. $75 \%\left(168 \mathrm{hrs} \times 232^{\circ} \mathrm{C}\right.$)		
		Elongation		Unaged min. $75 \%\left(168 \mathrm{hrs} \times 232^{\circ} \mathrm{C}\right)$		
Jacket	Unaged	Tensile Strength		2500 psi min. ($1.76 \mathrm{~kg} / \mathrm{mm} 2)$		
		Elongation		200\% min.		
	Aged	Tensile Strength		Unaged min. $75 \%\left(168 \mathrm{hrs} \times 232^{\circ} \mathrm{C}\right.$)		
		Elongation		Unaged min. $75 \%\left(168 \mathrm{hrs} \times 232^{\circ} \mathrm{C}\right)$		
Nominal Impedance	$50 \pm 3 \Omega$					
Nominal Capacitance	$95.8 \pm 3 \mathrm{pF} / \mathrm{m}$					
Nominal Velocity of Propagation	69.5\%					
VSWR (0 to 6 GHz)	≤ 1.3					
Attenuation (dB/1M)	$\begin{gathered} 1 \mathrm{MHz} \\ 10.2 \end{gathered}$	$\begin{gathered} 100 \mathrm{MHz} \\ 34.1 \end{gathered}$	$\begin{gathered} 1.8 \mathrm{GHz} \\ 180.0 \\ \hline \end{gathered}$	$\begin{gathered} \text { 2.4 GHz } \\ 206 \\ \hline \end{gathered}$	$\begin{gathered} \text { 5.2 GHz } \\ 315 \end{gathered}$	$\begin{gathered} 6.0 \mathrm{GHz} \\ 5.20 \end{gathered}$
Minimum Inside Bend radius	4.0 mm (0.16 in)					

INSERTION LOSS

Figure 4 shows the Insertion Loss for the CSE-SGAM-cCc-SGFB cable assembly. Insertion loss is the loss of signal power (gain) resulting from the insertion of a device in a transmission line.

Figure 4. Insertion Loss for the CSE-SGAM-ccc-SGFB Cable Assembly

VSWR

Figure 5 provides the voltage standing wave ratio (VSWR) across the cable assembly's bandwidth for the CSE-SGAM-ccc-SGFB cable assembly. VSWR describes how efficiently power is transmitted through the cable assembly. A lower VSWR value indicates better performance at a given frequency.

Figure 5. VSWR for the CSE-SGAM-ccc-SGFB Cable Assembly

PACKAGING INFORMATION

The CSE-SGAM-ccc-SGFB cable assembly is packaged in a clear plastic bag, in quantities of 50. Distribution channels may offer alternative packaging options.

CABLE ASSEMBLY DEFINITIONS AND USEFUL FORMULAS

VSWR - Voltage Standing Wave Ratio. VSWR is a unitless ratio that describes how efficiently power is transmitted through the cable assembly. A lower VSWR value indicates better performance at a given frequency. VSWR is easily derived from Return Loss.

$$
\text { VSWR }=\frac{10\left[\frac{\text { Return Loss }}{20}\right]+1}{10\left[\frac{\text { Return Loss }}{20}\right]-1}
$$

Insertion Loss - The loss of signal power (gain) resulting from the insertion of a device in a transmission line. Insertion loss can be derived from the power transmitted to the load before the insertion of the component PT and the power transmitted to the load after the insertion of the component $P R_{R}$.

$$
\text { Insertion Loss }(\mathrm{dB})=10 \log _{10} \frac{P_{T}}{P_{R}}
$$

TE TECHNICAL SUPPORT CENTER	
USA:	$+1(800) 522-6752$
Canada:	$+1(905) 475-6222$
Mexico:	$+52(0) 55-1106-0800$
Latin/S. America:	$+54(0) 11-4733-2200$
Germany:	$+49(0) 6251-133-1999$
UK:	$+44(0) 800-267666$
France:	$+33(0) 1-3420-8686$
Netherlands:	$+31(0) 73-6246-999$
China:	$+86(0) 400-820-6015$

te.com

TE Connectivity, TE, TE connectivity (logo), Linx and Linx Technologies are trademarks owned or licensed by the TE Connectivity Ltd. family of companies. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.
The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

TE Connectivity warrants to the original end user customer of its products that its products are free from defects in material and workmanship. Subject to conditions and limitations TE Connectivity will, at its option, either repair or replace any part of its products that prove defective because of improper workmanship or materials. This limited
 is not warrantied to exceed one (1) year from the original date of the end product purchase.
(c) 2022 TE Connectivity. All Rights Reserved.

