Multi-Contact Coax Connectors and VITA Standards
Need help with your Defense & Military project?
Abstract
A growing trend in electronic packaging for military and aerospace applications is the availability of multi-contact coaxial interconnects. A key driver is the desire to provide RF disconnect capability at the backplane/daughtercard interface. This simplifies engagement and disengagement by eliminating the need for the cables on the front panel (top side of the daughtercard). Instead, a multi-contact module allows several contacts to be mated or unmated simultaneously at the backplane/daughtercard interface. This preserves space on the front panel and facilitates insertion/removal of cards for installation, repair, upgrades, and more.
VITA 49, for example, defines an interface between the analog and digital sections of a radio. The daughtercard-to-backplane interface marks a reasonable point for separating the two sections. The digital functions, including digital signal processing, can be done on the backplane. Analog functions are performed on the daughtercard, which can be easily swapped to accommodate different frequency spectrums and so forth. This creates a need for an easily managed and disconnected RF interface. Republished from Connector Supplier (March 2014)
Multi-Contact Coax Connectors and VITA Standards
Need help with your Defense & Military project?
Abstract
A growing trend in electronic packaging for military and aerospace applications is the availability of multi-contact coaxial interconnects. A key driver is the desire to provide RF disconnect capability at the backplane/daughtercard interface. This simplifies engagement and disengagement by eliminating the need for the cables on the front panel (top side of the daughtercard). Instead, a multi-contact module allows several contacts to be mated or unmated simultaneously at the backplane/daughtercard interface. This preserves space on the front panel and facilitates insertion/removal of cards for installation, repair, upgrades, and more.
VITA 49, for example, defines an interface between the analog and digital sections of a radio. The daughtercard-to-backplane interface marks a reasonable point for separating the two sections. The digital functions, including digital signal processing, can be done on the backplane. Analog functions are performed on the daughtercard, which can be easily swapped to accommodate different frequency spectrums and so forth. This creates a need for an easily managed and disconnected RF interface. Republished from Connector Supplier (March 2014)